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Fast Approximate Joint Diagonalization
Incorporating Weight Matrices
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Abstract—We propose a new low-complexity approximate joint
diagonalization (AJD) algorithm, which incorporates nontrivial
block-diagonal weight matrices into a weighted least-squares
(WLS) AJD criterion. Often in blind source separation (BSS),
when the sources are nearly separated, the optimal weight matrix
for WLS-based AJD takes a (nearly) block-diagonal form. Based
on this observation, we show how the new algorithm can be
utilized in an iteratively reweighted separation scheme, thereby
giving rise to fast implementation of asymptotically optimal BSS
algorithms in various scenarios. In particular, we consider three
specific (yet common) scenarios, involving stationary or block-sta-
tionary Gaussian sources, for which the optimal weight matrices
can be readily estimated from the sample covariance matrices
(which are also the target-matrices for the AJD). Comparative
simulation results demonstrate the advantages in both speed and
accuracy, as well as compliance with the theoretically predicted
asymptotic optimality of the resulting BSS algorithms based on
the weighted AJD, both on large scale problems with matrices of
the size 100� 100.

Index Terms—Approximate joint diagonalization (AJD), auto-
regressive processes, blind source separation (BSS), nonstationary
random processes.

I. INTRODUCTION

T HE problem of approximate joint diagonalization (AJD)
of a set of matrices is frequently encountered in the con-

text of blind source separation (BSS), and, more generally, in
the field of multivariate statistical signal processing, whenever
it is desired to fit a set of square, symmetric, real-valued,1

matrices , by structured matrices of
the form

(1)
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1Throughout this paper all matrices are assumed to be real-valued. Possible
extension to the complex-valued case will be mentioned in our conclusions in
Section VII.

Here denote
unknown diagonal matrices, and denotes an unknown ma-
trix, often termed the mixing matrix, for easy reference, whereas
its inverse is termed the demixing matrix. These
terms are associated with the common interpretation of and

in the context of BSS, where an observed multivariate
process is modeled as an unknown linear mixture of some

unknown sources , viz. .
Typically in BSS, the diagonal matrices contain some

statistical or structural properties of the sources, e.g., corre-
lation matrices at different lags; different cumulant-slice ma-
trices; covariance matrices within different time intervals; time-
frequency distributions at different time-frequency points, and
more. The “target matrices” usually denote estimates of
similar matrices pertaining to the observed mixtures. The diag-
onality of the matrices , which is often (but not always)
attributed to the statistical independence of the sources, serves
as the key to identifiability of the mixing matrix from the
matrices .

Some of the earlier AJD algorithms (e.g., by Cardoso
and Souloumiac [4]) assume that (and ) are unitary.
While this may be a reasonable assumption whenever some
sphering (spatial whitening) preprocessing is applied, such a
combined operation was shown (e.g., [5]) to limit the resulting
performance. Nevertheless, this approach has become nearly
common-practice in many BSS applications, perhaps due to
its conceptual and computational simplicity. For example, in
biomedical applications, the second-order blind identification
(SOBI) algorithm [3] based on unitary AJD [4] has recently
gained popularity [13], [21], [24].

In recent years quite a few algorithms which relax the uni-
tarity assumption have been proposed. Among these, current
state-of-the-art algorithms which are considerably computation-
ally efficient relative to others (especially in large-scale prob-
lems with ) seem to be: Pham’s Log-Likelihood based
AJD [17] (termed LLAJD in here), which is further constrained
by the requirement that must all be positive definite; FF-
DIAG by Ziehe et al. [33]; QAJD by Vollgraf and Obermayer
[30]; FAJD by Li and Zhang [16] and QRJ2D by Afsari [1].

A common approach to AJD is to minimize some off-diag-
onality criterion applied to the transformed set ,
thereby obtaining an estimate of the demixing matrix as the
minimizer of this criterion. Usually (depending on the off-di-
agonality criterion), such an approach requires to constrain ,
so as to evade trivial minimization by down-scaling towards

. In [4], such a constraint is naturally entailed in the uni-
tarity assumption. When this assumption is relaxed, some alter-
native, more artificial constraints are to be considered. One such
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possible constraint, considered, e.g., in [6], is for each row of
the estimated demixing matrix to have unit Euclidean norm.
Another possible constraint, proposed in QAJD [30] (and also
applied in here), is that must have an all-ones main
diagonal. This constraint usually corresponds (in the BSS con-
text) to some scaling constraint on the estimated sources. In par-
ticular, when is the observations’ empirical covariance
matrix, such a constraint is rather plausible, since the implied
scaling in such a case translates into a standard unit-power con-
straint on the estimated sources. Of course, for other types of

, such a constraint may be rather arbitrary, and, in gen-
eral, the results might depend on the particular choice of .
Naturally, this constraint is only applicable if is positive
definite. Note that may or may not be included in the set
of “target matrices” to be jointly diagonalized.

QAJD is based on constrained minimization of the criterion

(2)

where the operator “off” nullifies the diagonal elements of a
matrix and “ ” stands for the Frobenius norm.

In FAJD [16], degeneracy of is evaded by adding a penalty
term (proportional to ) to (2). A different off-diago-
nality criterion, which also does not require explicit constraints
(since it is scale-invariant in ), is used in LLAJD [17]

(3)

(the operator “ddiag” nullifies the off-diagonal elements of a
square matrix, ). This criterion is
meaningful only for positive definite target-matrices .

Another suitable AJD criterion which is scale-invariant in
was proposed in [1] and [2]

(4)

In this paper, we propose an AJD approach which is based on
a weighted least squares (WLS) criterion, to be presented in the
sequel. However, our proposed algorithm does not minimize this
WLS criterion directly. Using Gauss iterations (e.g., [22]) in a
specially adapted, computationally efficient form, we apply suc-
cessive diagonalizing (“demixing”) transformations to the target
matrices. The process proceeds until the transformed target ma-
trices reach a form for which the direct (“mixing”) minimizer
of the WLS criterion is the identity matrix (we elaborate on “di-
rect” versus “indirect” minimization in Section II).

In addition to its computational efficiency, our approach of-
fers the possibility to incorporate proper weighting in the WLS
criterion, which is useful in many BSS scenarios (see, e.g., [8],
[23], [25], and [31]). Such weighting can improve (or even op-
timize, asymptotically) the performance of AJD-based BSS ap-
proaches by accounting for statistical properties of the estimated
target set.

Our algorithm is given the acronym WEDGE (Weighted Ex-
haustive Diagonalization with Gauss itErations). As we shall
show, in its unweighted (or uniformly weighted) version (termed
U-WEDGE),2 our solution is closely related to both FFDIAG
and QAJD.

In order to enable comparison of the weighted version,
we also considered possible modification of QAJD to allow
weighting.3 While the resulting Weighted QAJD (W-QAJD)
is significantly more computationally intensive than WEDGE,
we show that the small-errors perturbations of W-QAJD and
WEDGE are similar.

The paper is organized as follows: In Section II we present
our approach in its unweighted version first, for simplicity
of the exposition. We then consider the weighted version in
Section III and present our iterative algorithm in Section IV.
Intricate weight matrices suitable for WEDGE are derived in
Section V for three different BSS scenarios. Computer simula-
tions in Section VI demonstrate the validity of our analysis and
exhibit the computational properties and accuracy performance
of WEDGE.

Our weighted version of QAJD is proposed in Appendix A,
where we also deduce the small-errors similarity of W-QAJD to
WEDGE.

II. DIAGONALIZATION WITH UNIFORM WEIGHTS

We consider the unweighted (or uniformly weighted)
U-WEDGE first. As already implied in the Introduction, there
are (at least) two possible ways to express the desired joint-di-
agonality property. One is a so-called “direct” form (used, e.g.,
in [29] and [32])

(5)

and the other is the “indirect” form (used, e.g., in [4] and [30])

(6)

(both for ). When the joint diagonality
is exact, (5) and (6) are obviously equivalent, with .
However, when the relation is approximate, and some measure
of the matrix fit is used for both (5) and (6), the matrix which
optimizes the fit in (6) will not necessarily be the inverse of the
matrix which optimizes the fit in (5) (except in some partic-
ular cases).

Suppose that we fuse these two forms into one, using a least-
squares criterion for the matrix fit; Namely, for any two matrices

and define

(7)

where . Now, for any
“demixing” matrix , one can find a “mixing” matrix
which minimizes with respect to . This

2In [28] the algorithms WEDGE and U-WEDGE were called WAJD and
UWAJD, respectively.

3Similar modification of FFDIAG is meaningless, since FFDIAG does not
explicitly minimize any criterion in which the weighting can be incorporated.
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can be considered the “residual mixing” matrix which remains
after the “demixing” matrix is applied to the target matrices.
In other words, define

(8)

The (matrix) function fits to any “demixing” matrix its
“residual mixing” matrix , which attains the best “direct” LS
fit of the transformed target matrices.

Suppose now, that the matrix solves the equation
. Roughly speaking, this implies that the set of

matrices cannot be jointly diagonalized any
more, since its “residual mixing” matrix, or its “best direct-form
diagonalizer” (in the LS sense) is , the identity matrix.4

We show in Appendix B, that a necessary condition for
is a simpler set of nonlinear “normal equations”

(9)

Note that some rows-scaling constraint for is still re-
quired, since if any matrix solves the set (9), so does the
matrix where is any diagonal matrix. This can be
easily observed by noting that for any diagonal matrix , we
have . This rows-scaling invariance
in is also evident from the basic (8), as well as from the
well-known inherent scale-ambiguity in BSS. We, therefore,
also employ a scaling convention, which is the one used in
QAJD— . For convenience in the
notations we shall assume that the matrix is part of
the target-set, hence, all summations indices over begin
at . When is to be excluded from the set, the
summation should begin at .

It is interesting to note here, that the AJD solution provided
by the FFDIAG algorithm [33] can also be shown to satisfy our
condition (9).5 Up to date it has been unclear whether or not
FFDIAG actually minimizes any explicit criterion or solves any
explicit equation (expressed in terms of the target-matrices). Our
observation identifies such an equation, and, moreover, asserts
that any solution of (9) is also a stationary point of FFDIAG,
and vice versa. In this sense, results produced by FFDIAG and
U-WEDGE are equivalent.

Note further, that (9) is only a necessary condition for a so-
lution of (8), since it only implies that is a stationary
point, but not necessarily a minimum, of the LS criterion in (8).
Thus, while any solution of FFDIAG solves (9) as well, it is not

4Note that the minimized expression in (8) is insensitive to the signs of the
columns of ��—we, therefore, employ a convention by which argmin always
selects the minimizer with nonnegative diagonal elements.

5To observe this, note that if (and only if) (9) is satisfied, all of the � terms
on the bottom of [33, p. 783] (an unnumbered equation in there) vanish, and the
update process in FFDIAG is thereby halted.

guaranteed to also solve (8), namely to be a U-WEDGE solu-
tion. Observe, for example, that given any set of target matrices,
one can usually construct two additional symmetric matrices,
such that when these matrices are appended to the set,
solves (9), see Appendix C for more details. However, such an
undesired solution is usually an unstable stationary point: with
any slight perturbation thereof, U-WEDGE would rapidly drift
to another solution of (8), providing a reasonable diagonaliza-
tion solution.

Also note that the other algorithms may also have similar un-
desired solutions. For example, the constrained criterion (2) of
QAJD appears to have local minima at matrices that are close
to false solutions of (9), see the discussion in [16]. Similarly, as
shown in [2], the LLAJD criterion (3) may exhibit false local
minima or saddle points at matrices satisfying

(10)

In Appendix A we shall observe another interesting relation
to another AJD algorithm, namely QAJD. Unlike FFDIAG,
QAJD minimizes an explicit LS criterion (2), which can be
modified into a WLS criterion. To enable a more general com-
parison between WEDGE and a weighted version of QAJD, we
shall develop (in Appendix A) a weighted version of QAJD,
W-QAJD (which is considerably more computationally intense
than WEDGE). As a byproduct, we shall be able to observe
similarity in the small-errors perturbations between W-QAJD
and WEDGE (which would obviously also hold for the partic-
ular cases of unweighted QAJD and U-WEDGE).

Indeed, numerical simulations show, that the constrained
minimization of in (2) (i.e., outcome of QAJD) and the
similarly constrained (scaled) solution to (outcome
of WEDGE) are quite often very close to each other, especially
when the target matrices consist of small perturbations of
a set which is exactly jointly diagonalizable. However, this
is certainly not always the case in general, as evident in the
simulation results which will be presented in the sequel.

III. INCORPORATING A WEIGHT MATRIX

The unweighted QAJD and U-WEDGE can be generalized
by introducing an arbitrary positive definite weight matrix .
To this end, in the generalized QAJD, the LS criterion
in (2) would be replaced by a quadratic form of off-diagonal
elements of

(11)

where is an -dimensional column vector
composed of all off-diagonal elements of below
the main diagonal of the matrices for . For
convenience in some of the subsequent derivations, we prefer
to group the elements of according to their locations in
the matrices (rather than according to their matrix-affiliation),
namely

(12)
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Fig. 1. A general separation scheme with iteratively estimated weights.

where

(13)
are vectors [the arguments are omitted for brevity
in (12)].

Similar weighting can be applied for turning U-WEDGE into
WEDGE, by replacing of (7) with a weighted version using
a weight-matrix

(14)

where is a suitable quadratic form of the off-diagonal el-
ements of . More specifically

(15)

where

(16)

for , , and .
The equation is thereby simply replaced with

, where

(17)

Note that above is not the most general
weighted form of , since, due to the special struc-
ture of and , it only accounts for off-diagonal
elements of the difference matrices in the quadratic form. This
dissimilarity merely entails deliberate, simplifying elimination
of redundant terms, which are usually meaningless in the
context of approximate joint diagonalization, and are given
null-weight in an optimally weighted blind separation scenario.

Weighted AJD is desirable whenever it is possible to charac-
terize random variations of around their
theoretical counterparts in terms of their first and second
moments. In such cases, an optimal weight matrix (in the
sense of minimum mean square error in the estimation of ) is
defined (assuming small errors) as the inverse of the covariance
matrix of . However, a common problem in such cases is that
since the statistics of the source signals are unknown, estimating
the covariance of directly from the observed mixtures can be

prohibitively complicated. However, in a near-separation con-
dition, when each source is (nearly) individually available, the
relevant statistical properties of each source can be estimated
from the data, possibly leading to reliable estimates of the co-
variance of . Then, the implied weight matrix can be used to
attain improved separation, which would in turn yield improved
estimates of . The process may be iterated a few times. Such
an approach was taken, for example, in the optimal fourth-order
identification algorithm (OFORIA, [23]), where the target ma-
trices were the covariance matrix and cumulant slices; and more
recently in the fast implementation of “weights-adjusted SOBI”
(WASOBI) [25]), where the target matrices were correlations at
different time-lags. The estimation scheme is depicted in Fig. 1.

In this paper we shall not address the WLS criterion (11) in
its full generality, but only in a form by which the weight matrix

is block diagonal, with blocks , ,
, each corresponding to the respective (it is important

to note that the notation does not refer to the th block
of , but rather to a block along its diagonal, corresponding to
the covariance of ). Due to the special structure (12), (13) of

, such block-diagonal weighting can be optimal whenever the
vector-pairs , are uncorrelated for all
(although each vector may have, and usually has, correlated
elements). Fortunately, it so happens in a BSS context, that due
to the independence of the sources, such a block-decorrelation
condition can often be encountered when the sources are nearly
separated, as we shall show in the sequel.

The criterion (11) of the W-QAJD can then be expressed as

(18)

Similarly, for WEDGE, of (17) can be expressed as

(19)

By requiring that be a stationary point of the sum in
(19), it can be shown that a necessary condition for to be a
solution of , is to also be a solution of the system
of equations

(20)

, [compare to (24) in Section IV].
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IV. FIXED-POINT ITERATION FOR WEDGE

We shall now propose an iterative algorithm for solving
. As an initial estimate of we begin with

, so as to satisfy the scaling constraint.
Then, in each iteration , we seek an estimate of the “residual
mixing” matrix, (the minimizer of the WLS criterion
in (19)), so as to fit the partially diagonalized matrices

by matrix products of the
form , where . Once

is found, the estimated demixing matrix is updated as
. Next, although it is not strictly necessary,

we recommend subsequently to normalize by suitable
scaling of its rows, like in QAJD, to fulfil the constraint

Any other reasonable way of normalization may work equally
well.

In order to find in each iteration, we apply Gauss’ iter-
ative method (e.g., [22]), a generic tool for minimization of a
quadratic form which depends on a nonlinear function of the
parameters. More specifically, we apply

(21)

where is the internal (nested) Gauss-iteration index,
, and (assumed to have full

rank). Here is the same as of (15) (although its ar-
gument has changed from the matrix to its vectorized form

). Exploiting the block-diagonality of , (21) can be rewritten
as

(22)

where is the derivative (matrix) of with respect to ,
whose elements can be easily shown to be given by

(23)

denoting Kronecker’s delta, the th column of , and
is a vector composed of diagonal elements of ,

, namely

Assume now, that the initial condition (in the internal Gauss
iterations) for is selected as . The linear system for

is nicely decoupled in this case, so that elements of can
be obtained merely by solving the following systems
of 2 2 for , :

(24)

where we have used the relation . Com-
puted for all pairs , (24) realizes one update of at com-
plexity . In the case of uniform weights, the com-
plexity is only . As for the diagonal elements , the
respective columns of the derivative matrices (at )
are all-zeros, therefore these elements remain unchanged from
their initial values of 1.

Note that the equations in (20) are indeed obtained when re-
quiring zero updates for all elements of in (24), namely when
the initial guess is the minimizer of the quadratic form,
so .

To proceed, rather than reemploy (22) directly for
(which would no longer enjoy the decoupling

induced by ), we simply use to update as
. In other words, we merely employ a

single Gauss iteration nested within each outer iteration. Note
that the computational efficiency of our approach dwells on
our ability to use the identity matrix as an initial guess for
the Gauss step in each iteration—which decouples the solution
of a high-dimensional system into the solution of several
small-dimensional systems (24).

Convergence of the algorithm is nearly quadratic, as inher-
ited from the Gauss iterations. Simulations confirm very good
global convergence even in high dimensions, significantly out-
performing the competitors in terms of speed (in Matlab), with
similar estimation accuracy (in the unweighted version).

Note further, that the proposed algorithm can be easily
modified for a tracking environment. Since one update of the
demixing matrix is computationally very cheap, such updates
can be interlaced with updates of the target matrices .

To conclude this section, we provide a “pseudocode” for
WEDGE.

:
• “ ”: ,

;
• “ :” ,

,
• —

.
: — .

:
1)

( );
2)

, ;
3) -

(24)
( , );

4)
5) .

, .

V. WEIGHT MATRICES IN DIFFERENT BSS SCENARIOS

In this section, we provide three different examples for
three different BSS scenarios, in which introduction of proper
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weighting into the AJD process can attain asymptotically
optimal separation results. The weighting is introduced
into the AJD via the use of WEDGE in the iteratively
reweighted scheme outlined in Fig. 1 above. All three sce-
narios assume the noiseless, static, invertible mixing model

(for ). The separation is based
on second-order statistics only, and the sources are all assumed
to be Gaussian—therefore, closed-form expressions for the
(estimated) covariance of correlations estimates can be easily
obtained and exploited for (asymptotically) optimal weighting.

In Section V-A, we consider the separation of stationary
autoregressive (AR) sources. In Section V-B we consider
separation of nonstationary sources, assumed to be block-sta-
tionary and white within blocks. In fact, under asymptotic
conditions the resulting optimally weighted algorithm can be
regarded in this case as a novel implementation of the block
Gaussian likelihood algorithm (BGL, by Pham, [19]), since
they are both asymptotically optimal. However, we also show
(in Section V-C) how weighting can be exploited in the case of
block-stationary sources which are not white within blocks—to
which the BGL algorithm cannot be readily applied.

A. Stationary AR Sources: WASOBI

In this subsection, we derive weight matrices for WASOBI,
for separation of independent stationary sources, modeled as AR
random processes. The matrices are computed for the case of
Gaussian sources, for which the resulting separation would be
asymptotically optimal (approaching the corresponding Cramér
Rao bound (CRB) for best possible separation [10]). Note that
(at least) two other approaches, similarly exhibiting asymptotic
optimality for this problem, are known in the literature: A max-
imum likelihood—based approach [7] by Dégerine and Zaïdi,
and a Gaussian mutual information—based approach [19] by
Pham. However, so far only WASOBI appears to be computa-
tionally applicable to large-scale problems [25]. Note further,
that the optimal solution for the case of known spectra of the
sources was characterized by Pham and Garat in [18]. We shall
revisit this characterization in the sequel.

We assume AR sources of known maximal order
, with distinct sets of AR coefficients. The observa-

tions’ correlation matrices take the structure of (1) where
are the sources’ corre-

lation matrices (diagonal due to the spatial independence of
the sources), such that is the autocorrelation of
at lag . It was shown in [9] that (asymptotically) the set of

symmetric estimated correlation matrices

(25)

at lags (assuming samples are
available) form a sufficient statistic for estimating .

To estimate the elements of , we shall assume that the
observations are (nearly) separated and are therefore (nearly)
statistically independent. Throughout this section we shall use
the simplified notations and instead of

and , respectively. Under the Gaussianity assumption
we have [20]

(26)

where is the Kronecker delta and

(27)

Note that under the near-separation assumption
so that unless and ,

which establishes the block-diagonality of and of the
associated (optimal) .

It can be shown that can be computed
as the correlation sequence of an AR process whose coefficients
are given by a convolution of the th and the th AR coefficients.
To see this, note that (27) can be rewritten as

(28)

where and are -transforms of and ,
respectively. Next, note that for an AR process with coefficients

we have

(29)

where , and that the covariance se-
quence of each AR source is the inverse -transform of ,
namely

(30)

The aforementioned convolution relation follows from struc-
tural comparison of (27)–(30).

The computation of can proceed
by finding AR coefficients of processes with covariance func-
tions and , and by computing their convolution
to form AR coefficients of an auxiliary AR process. Finally,

are found as the covariance function
of the auxiliary process. The last step can be done in
operations, for example, by the inverse Schur and the inverse
Levinson algorithms [20]. Furthermore, notice that the th
element of reads

(31)

therefore, is a sum of Toeplitz and Hankel matrices, so
its inverse can be computed in operations, e.g.,
following the procedure in [12]. This procedure is used in the
Matlab implementation of WASOBI [27].

When the sources’ correlations (or their AR parame-
ters) are known, the resulting weight matrices are optimal (under

Authorized licensed use limited to: UTIA Trial User. Downloaded on February 18, 2009 at 04:01 from IEEE Xplore.  Restrictions apply.



884 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 3, MARCH 2009

weak asymptotic conditions). When these optimal weight ma-
trices are plugged into the “normal equations” in (20), a con-
dition for the optimality of is obtained. It is interesting to
examine whether this optimality condition coincides with the
optimality condition (for separation of stationary sources with
known spectra) derived by Pham and Garat in [18], which, in
our notations (for the problem at hand) can be expressed as

(32)

Here are the Fourier coefficients of the inverse of the spec-
tral density of the th source. The answer is, indeed, positive,
and we provide a proof of this equivalence in Appendix D.

As an interesting byproduct, our proof shows that ,
the product of the optimum weight matrix and the vector of true
covariances of the th source, is independent of , and depends
only on the spectrum of the th source. Consequently, it is pos-
sible to design an algorithm which is similar to WASOBI, but
does not need to compute all weight matrices ,
but only sequences , instead. However,
the presentation of such an algorithm exceeds the scope of this
paper.

B. Block-Stationary-White Sources: BGL

The BGL algorithm [19] was proposed for BSS of block-wise
stationary [independently, identically distributed (i.i.d.) in each
block] Gaussian random processes. In this section, we propose
an alternative approach, which is based on the iterative process
outlined in Fig. 1, and is therefore asymptotically optimal, just
like BGL.

The block-stationarity assumption in [19] asserts that the
observation interval can be divided into
nonoverlapping intervals, each of length , in which each of
the sources is Gaussian and i.i.d., having zero mean and vari-
ance , where denotes the source index and
denotes the interval index. Our proposed separation approach is
based on the AJD of the set of the observations’ covariance ma-
trices from all intervals, , , estimated
using straightforward averaging within each interval.

It can be easily seen that if the sources are nearly separated,
we have , and, since each source is
assumed to be i.i.d. in time

(33)

and and are uncorrelated unless ,
and .
Therefore, the optimal weight matrix is not only block-

diagonal, but also diagonal in this case, and its th diagonal
block satisfies

(34)

Like BGL, the iteratively reweighted WEDGE algorithm, in
which the weight matrices are computed using the estimated

in lieu of the true variances in (34), is asymptotically
optimal. In practice, under asymptotic conditions, the two algo-
rithms produce results which are almost identical.

C. Block-Stationary-AR Sources: Block-WASOBI

The data models introduced in the two previous subsections
can be combined into one, allowing for block-wise stationary
Gaussian sources modeled as different AR (rather than white)
processes in each interval (and independent between intervals).
The separation would be based on applying WEDGE to the set
of lagged covariance matrices, where is the number
of blocks and is the number of delays (time lags), equal to
the maximum assumed AR order plus one. Derivation of the
optimum weight matrices is straightforward by combining the
results of the previous two sections. Such a combined model
might be useful for separating sources which can be modeled
as block-wise stationary, being colored within blocks—such as
speech signals.

The advantages of the resulting algorithm are twofold: Natu-
rally, it offers (asymptotically) optimal exploitation of both the
nonstationarity and the spectral diversity; But furthermore, as-
sume that one wishes to only use zero-lagged correlations in
each interval ( , as in BGL): When the sources are
not white within intervals, straightforward application of BGL
to these matrices would no longer be (asymptotically) optimal,
not even with respect to these matrices alone, since the implied
weighting of BGL is equivalent to the weighting obtained under
the whiteness assumption. With the proposed algorithm, proper
weighting can be obtained, outperforming BGL in such cases.

VI. SIMULATIONS

We first present a comparative simulation study of typical
convergence patterns and running speeds of U-WEDGE versus
state-of-the-art competing generic AJD algorithms operating on
synthetic large-scale target-matrices. Then, we demonstrate the
performance of the weighted version (WEDGE) in the three
BSS scenarios considered in Section V, and compare to com-
peting algorithms in terms of accuracy and speed.

A. Generic AJD With Uniform Weights

1) Positive Definite Matrices: We generated ma-
trices of dimension with 20, 100 as follows:
was always set to the identity matrix, whereas (for

) were generated as diagonal matrices with all di-
agonal elements drawn independently from a Uniform distribu-
tion between 1 and 2, . Then were generated as

, where is
the mixing matrix, is a noise matrix with i.i.d. elements
drawn from a standard Normal distribution , and is
a free parameter. In this example, we chose to be orthog-
onal, generated using the QR decomposition (see, e.g., [11])
of a random matrix with i.i.d. elements (taking the
factor).

Fig. 2 presents typical convergence patterns of LLAJD [17],
FFDIAG [33], QAJD [30], FAJD [16], QRJ2D [1] and our pro-
posed U-WEDGE. The convergence is shown in terms of the
unweighted criterion of (2) over a single trial. From our
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Fig. 2. The LS criterion (2) versus the iteration number for � � ���, � � ��

in diagram (a) and � � ���� and � � ��� in diagram (b).

experience, there is no considerable variation in these patterns
between trials (when using the same matrix-generation setup).
We note the tendency of U-WEDGE to increase in the
first iteration, before decreasing rapidly in the succeeding itera-
tions—note, however, that U-WEDGE was not designed to min-
imize (or any other specific criterion), so this behavior is
not a particular anomaly. We note the significantly slower con-
vergence (in terms of number of iterations) of QAJD and FAJD,
especially with the higher matrix dimensions .

We observe that in the large-scale case , LLAJD
and QRJ2D converged after approximately seven iterations,
UWAJD after 15 and FFDIAG after 25 or 30. QAJD and FAJD
needed 30 iterations or more. To complement this information,
we present in Table I the actual running-times (on a Pentium
4 PC, 3.4–GHz with 1-GB RAM, running in Matlab 7.0.4
on Windows XP Professional) of the algorithms with the
specified number of iterations. Here LLAJD stands for the orig-
inal (Pham’s) implementation of Pham’s algorithm, whereas
LLAJDp stands for a more efficient implementation thereof (In
short, each iteration of LLAJD consists of a full sweep which
requires internal minimizations. In LLAJD, these

TABLE I
ASYMPTOTIC COMPUTATIONAL COMPLEXITIES OF AJD ALGORITHMS AND

COMPUTATION TIMES IN MATLAB FOR � � ��� AND � � ��, POSITIVE

DEFINITE MATRICES, ORTHOGONAL MIXING MATRIX

internal minimizations are performed sequentially. In LLAJDp,
they are partially parallelized, saving looping opeartions in
Matlab).

Note that the theoretical asymptotic computational complex-
ities (per iteration) of the algorithms are quite similar, as it is
generally dominated by the complexity of the transformations

for . However,
the actual computation times are very different, because the
different algorithms entail different programming structures in
terms of vector and matrix operations in Matlab, possibly re-
ducing sequential looping and enabling parallel processing.

2) Indefinite Matrices, Nonorthogonal Mixing: The previous
experiment was modified such that the distribution of the diag-
onal elements of (for ) was taken
as (rather than ), giving rise to sign-indefinite
target-matrices. The mixing matrix was taken at random
with i.i.d. elements and subsequently had its columns
normalized such that each row of had unit Euclidean
norm [15]. The results are shown in Fig. 3. We note that the con-
vergence of QAJD and FAJD is not as (relatively) slow as in the
previous example.

B. Weighted AJD in BSS

We now turn to present examples of applying the iteratively
reweighted scheme (Fig. 1) to the three types of BSS problems
presented in Section V.

1) WASOBI: We consider blind separation of AR
sources with distinct spectra. Such an example can serve to
demonstrate suitability of the algorithm for separating high-di-
mensional data sets such as high density EEG signals.

The target-matrices are sample covariance ma-
trices of the mixture at lags , for . The AR
processes had poles at , where

and is a free parameter. Among
the possible distinct AR processes, which differ in
the modulus of at least one pair of complex conjugate poles,
100 processes were chosen for the test. The parameter allows
to tune the spectral dynamic range of the sources. For small ,
the sources’ power spectra are flat, similar to each other and
therefore hard to separate. The spectra become more distinct
as approaches 1. Sources of length were
mixed by random matrices (with a condition number ) in
100 independent trials.
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Fig. 3. The LS criterion (2) versus the iteration number for indefinite target
matrices, � � ���, � � ��, and � � ����, and � � ���, respectively.

The ISR’s of the algorithms FFDIAG and QAJD are not
shown, as they are undistinguishable by naked eye from the
results obtained by U-WEDGE. The average computation
times were about 1s for the initial separation by U-WEDGE.
Each application of WEDGE required about 3s and the entire
procedure required 27s of CPU time.

In Fig. 4, diagrams (a)–(d), the inverted mean ISR and the cor-
responding ISR bound computed from the corresponding CRLB
[10] are plotted versus (the data length) for and

; versus for ; and versus (the number
of estimated correlation matrices), respectively. The fourth di-
agram shows the performance in presence of additive Gaussian
noise, with the CRLB computed for the noiseless case. Perfor-
mance is also compared to that attained in the preprocessing
stage by U-WEDGE.

We note the asymptotic efficiency of WASOBI, as well as
its robustness with respect to overestimating the order of the
AR processes (by using more correlation matrices), contrasted
by the adverse impact on U-WEDGE. Comparison to SOBI in
such a large-scale example would take prohibitively

Fig. 4. Inverted mean ISR of 100 AR sources separated by WASOBI and
U-WEDGE versus (a) parameter �, (b) the data length � , (c) the number of
estimated correlation matrices L� , and (d) the input SNR (added noise). The
CRB in (d) pertains to the noiseless scenario.

long running time (for 100 trials), and the results are expected
to be similar to those of U-WEDGE (since they are both use
uniformly weighted AJD).
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Fig. 5. The Pham’s log-likelihood criterion (3) versus the iteration number for
different AJD algorithms.

2) BGL: We now address the scenario of block-stationary
sources, white within each block. The target-matrices are there-
fore sample covariance matrices (at zero lag), taken from

data segments of length 100 samples each. In each segment
the sources were generated as spectrally white Gaussian
processes, with variances drawn at random (independently in
each segment), from a distribution. The mixing matrix
was the same orthogonal random matrix as in the first ex-
periment.

Our iteratively reweighted scheme of Fig. 1 was applied
(using WEDGE) with the weights prescribed in Section V-B
above. We used 20 iterations of the unweighted (U-WEDGE)
phase, followed by three outer (reweighting) iterations, each
consisting of at most five inner (WEDGE) iterations. We name
the resulting algorithm BG-WEDGE.

The maximum likelihood (ML) estimator of the mixing/
demixing matrices in this case is realized by Pham’s LLAJD
algorithm, and thus the most meaningful diagonalization crite-
rion in this case is the log-likelihood criterion (3).

Fig. 5 shows typical learning curves for LLAJD (imple-
mented using the efficient parallelized version, LLAJDp),
QRJ2D, U-WEDGE and BG-WEDGE. As expected, we can
see that BG-WEDGE achieves approximately the same perfor-
mance as LLAJD, since both are asymptotically optimal (each
with its own reasoning). The other algorithms, U-WEDGE
and QRJ2D are only suboptimal. This is also apparent from
the inverted average ISR’s obtained by the four techniques in
100 independent trials. They were nearly the same, equal to
38.15 dB for LLAJD and BG-WEDGE and equal to 33.94 dB
for both U-WEDGE and QRJ2D. In other words, separation
performance of BG-WEDGE and LLAJD in terms of ISR was
in average 4 dB better than that of the other two techniques.

Running times, excluding the computation of the covariance
matrices (which is common to all algorithms), were 5.62s,
3.03s, 0.21s, and 0.29s for LLAJDp, QRJ2D, U-WEDGE and
BG-WEDGE, respectively. Thus, the asymptotic optimality of
BG-WEDGE in this example in Matlab is attained at a very low
computational cost compared to LLAJD/LLAJDp.

3) Block WASOBI: We now address the framework of block-
stationary sources which are not spectrally white within blocks
(but are modeled as unknown AR processes). We compare the
block-WASOBI algorithm (iteratively reweighted with weights
prescribed in Section V-C) to that of WASOBI and BGL, which
ignore the spectral shape of the sources within blocks. Rather
than use synthetic sources, we chose to use real natural speech
signals in this example, since such signals roughly fit the block-
stationary model, but are certainly not white within blocks.

We used speech utterances of different speakers
(male and female), sampled at 8000 Hz. In each trial, each
source was taken as samples of speech by the
respective speakers, starting at random times. The sources were
mixed using a random orthogonal matrix and blindly separated
by the three methods. We applied some coarse optimization
of the tuning variables of the algorithms. For WASOBI, we
selected the AR order 12, for BGL and Block WASOBI we
selected partitioning to 20 intervals of equal length. For Block
WASOBI, the best separation was obtained for AR order equal
to one in each interval. The resultant average signal-to-interfer-
ence ratios after the demixing were 26.3 dB for WASOBI, 20.7
dB for BGL, and 30.5 dB for the Block WASOBI.

The experiment was then repeated using a nonorthogonal
mixing matrix, generated as the sum of the Identity matrix and
a random matrix with i.i.d. elements drawn from a
distribution. In this way, speech energy of all speakers is not
equally present in the mixtures. The resultant average SIR was
thereby reduced to 21.2, 14.9, and 23.6 dB for WASOBI, BGL,
and Block WASOBI, respectively.

These results clearly demonstrate the advantage of Block-
WASOBI in separation of speech signals.

VII. CONCLUSION

We introduced a novel AJD algorithm, given the acronym
WEDGE, with two clear advantages over competing AJD al-
gorithms: significant computational efficiency, and the ability
to accommodate weight matrices, which can considerably en-
hance (and even optimize) the separation performance in BSS.
We also pointed out the relation to FFDIAG [33] and to QAJD
[30], deriving a weighted version (W-QAJD) of the latter.

The theoretical asymptotic complexity of WEDGE and
U-WEDGE is the same as that of most of its competi-
tors, . In Matlab, however, our implementation of
U-WEDGE was shown to run significantly faster than all of its
competitors. This is mainly due the convenient way in which
U-WEDGE lends itself to be coded in terms of vector and
matrix operations, avoiding looping iterations, which are rather
time-consuming in Matlab.

For the computation of weight matrices we considered an
iteratively reweighted scheme, and prescribed the estimation
of asymptotically optimal weights in three scenarios involving
Gaussian sources: Stationary AR sources, Block-stationary
sources which are white within blocks, and Block-stationary
sources which are colored (AR processes) within blocks. These
three scenarios gave rise to the development of WASOBI,
BG-WEDGE, and Block-WASOBI algorithms, respectively, all
utilizing WEDGE for the weighted AJD and U-WEDGE for
the initial, unweighted phase.
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The resulting WASOBI algorithm is especially suited for
separation in large-scale problems such as EEG and MEG.
BG-WEDGE offers a computationally attractive alternative to
BGL in the Block-stationary-white scenario, and can also be
combined with WASOBI into Block-WASOBI, whose scope
extends also to block-wise-colored sources such as speech
signals.

The entire framework of AJD considered in this paper
consisted of real-valued, symmetric target-matrices. When the
target-matrices are complex-valued and Hermitian, and the
diagonal source matrices are real-valued, extension of our algo-
rithms for finding complex-valued mixing/demixing matrices is
straightforward, and merely involves substitution of all “trans-
pose” operations with “conjugate transpose” (thus, the same
Matlab code can be readily applied in such cases). In the fully
complex framework, in which the diagonal matrices may also
be complex-valued (and the target-matrices non-Hermitian),
adaptation of our algorithms is more involved, but possible,
also [27].

Full Matlab code of the algorithms is available online at [27].

APPENDIX A
A PROPOSED WEIGHTED VERSION OF QAJD

In this Appendix, an implementation of the weighted QAJD,
termed W-QAJD is presented. It is based on a slightly modified
Newton’s method. In the special case of uniform weights, the al-
gorithm is called uniformly weighted QAJD (UW-QAJD) and
serves as an alternative implementation of QAJD.6 The devel-
opment of the W-QAJD algorithm would provide some insight
into the small-errors perturbations of the solution, for compar-
ison with the WEDGE solution.

Assume that the algorithm operates near the optimum solu-
tion, i.e., assume that the constrained minimum of the criterion
(18) is achieved for being in a close neighborhood of the iden-
tity matrix. Then, the criterion and the constraint may be ex-
pressed in terms of using Taylor series expansions at .
An approximate solution for would then be found by mini-
mizing a quadratic criterion under a linear constraint. The next
step would be the same as in WEDGE: substitute with

, and iterate several times until convergence to a
stationary point is reached.

More specifically, let in (13) be expanded in terms of
its first-order Taylor expansion as

(35)

where , ,
and is a suitable matrix, namely

... (36)

where the two nonzero blocks in are at positions
and , respectively, for , .

6Unlike the original QAJD algorithm, UW-QAJD does not seem to exhibit
significant differences in convergence rates between cases of positive-definite
or sign-indefinite target matrices.

The simplified criterion is

(37)

The linearized constraint is given by
or , where

...
. . .

(38)

In other words, any admissible must lie in an orthogonal com-
plement of the columnspace of . Let a matrix denote a
basis of this orthogonal complement. In Matlab can be found,
e.g., by decomposition of . Then, any admissible can
be written as , where is any vector. The
constrained minimizer of the criterion (37) can then be found as
the unconstrained minimum of with respect to .
Straightforward computation yields the optimum as

(39)

Then, the vector is reshaped into a matrix, to which
the identity matrix would be added to yield the estimated . In
practice, the convergence rate (in terms of the typical number of
required iterations) appears to be as fast as that of the WEDGE.
However, as we can see from (39), each iteration requires the
solution of a linear system of dimension ,
so that its overall computational complexity is . There-
fore, this implementation is not suitable for large-dimensional
matrices encountered in large-scale BSS.

The derivation of the W-QAJD allows, however, asymptotic
analysis of the algorithm under the assumption that the target
matrices differ from diagonal matrices by small perturbations,
and . Then, the matrix is approximately a
zeros-ones matrix, such that consists only of diag-
onal elements for any matrix . Thus, an orthogonal
complement of such approximately equals to a 0–1 ma-
trix such that is a column vector composed of
all off-diagonal elements of . It therefore follows that pertur-
bation in the constraint matrix only influence the diagonal
elements of , but not its off-diagonal elements. Further, under
these conditions it can be seen that the off-diagonal elements of
the optimum can be found by solving the 2 2 systems

(40)
Note that when is close to identity, and , we have

. Comparison of (24) and (40) reveals that WEDGE
and W-QAJD have the same first-order perturbations under the
condition that the target matrices are nearly diagonal.
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APPENDIX B
RELATION BETWEEN AND

A sufficient condition for is

(41)

for , where was defined in (7).
Let denote the th element of . Then
straightforward calculus gives that the condition (41) is always
satisfied for . For we have

(42)

In matrix form, (41) is equivalent to , where
was defined in (9).

APPENDIX C

This appendix presents a method that allows for any set of
matrices , , to find two symmetric
matrices and such that the augmented set
of the matrices obeys

(43)

In this case, may not necessarily be argmin of
defined in (7), but it is a stationary point, where the gradient is
zero.

Put

(44)

The condition (43) is then equivalent to
or

(45)
for . If the diagonals of and

are chosen in advance so the 2 2 matrix in
(45) are regular for each (for example, one can choose

and for ),
the off-diagonal elements of and can be
found by solving (45).

The condition means that the augmented set is a stationary
solution for U-WEDGE and FFDIAG: If the algorithms are ap-
plied to such a set of matrices, they stop without doing anything.
The stationary solution might or might not be the desired joint
diagonalizer. In practice, however, convergence of the algorithm
to such a false solution was never observed.

APPENDIX D
EQUIVALENCE OF WEDGE-WASOBI FOR AR SOURCES TO

PHAM AND GARAT’S CONDITION

Pham and Garat [18] have shown that for separating sta-
tionary Gaussian sources, the ML estimate (which is
asymptotically optimal) has to satisfy the following set of
equations (end of p.1718 in [18], restated in our notations):

(46)

where is given by (25) (for all , being the ob-
servation length), and where is a sequence whose Z-trans-
form is the inverse of of (29) (which is the Z-transform
of , the correlation sequence of the th source).

In our case of AR sources it is straightforward to show
that is a finite, symmetric sequence of (maximal) length

(given by the scaled correlation sequence of the
respective AR coefficients). Moreover, due to the Z-transform
relation, we have the deconvolution property

(47)

where denoted Kronecker’s delta. Next, define the se-
quence

(48)

and the vectors

(49)

(50)

Note that in this case, (46) can be expressed as

(51)

where is defined in (12).
Our basic claim is that , and, likewise,
(where is the respective block of the WASOBI op-

timal weight matrix), and, therefore, (46) is equivalent to our
WEDGE-WASOBI condition (20).

To prove this, we would show that the inverse relation holds,
namely that

(52)
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where , the inverse of the optimal , is the covariance
of the estimated , whose th element is given by [recall
(27) and (31)]

(53)
with

(54)

Let us compute the th element of the product :

(55)

Substituting we get

(56)

where we have used (47) for the transition before the last.
This established the proof that and therefore

. With straightforward substitution of the indices
it can also be shown that . Thus, when the sources’
spectra and correlation are known, (20) can be expressed (for

) as

(57)
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